(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
2ndspos(s(s(N1134_1)), cons(X, cons(Y400_1, cons2(X1135_1, cons(Y1136_1, Z1137_1))))) →+ rcons(posrecip(Y400_1), rcons(negrecip(Y1136_1), 2ndspos(N1134_1, Z1137_1)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [N1134_1 / s(s(N1134_1)), Z1137_1 / cons(X, cons(Y400_1, cons2(X1135_1, cons(Y1136_1, Z1137_1))))].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
2ndspos, 2ndsneg, plus, times

They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
plus < times

(8) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

The following defined symbols remain to be analysed:
plus, 2ndspos, 2ndsneg, times

They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg
plus < times

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)

Induction Base:
plus(gen_s:0'6_0(0), gen_s:0'6_0(b)) →RΩ(1)
gen_s:0'6_0(b)

Induction Step:
plus(gen_s:0'6_0(+(n9_0, 1)), gen_s:0'6_0(b)) →RΩ(1)
s(plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b))) →IH
s(gen_s:0'6_0(+(b, c10_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

The following defined symbols remain to be analysed:
times, 2ndspos, 2ndsneg

They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

Induction Base:
times(gen_s:0'6_0(0), gen_s:0'6_0(b)) →RΩ(1)
0'

Induction Step:
times(gen_s:0'6_0(+(n928_0, 1)), gen_s:0'6_0(b)) →RΩ(1)
plus(gen_s:0'6_0(b), times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b))) →IH
plus(gen_s:0'6_0(b), gen_s:0'6_0(*(c929_0, b))) →LΩ(1 + b)
gen_s:0'6_0(+(b, *(n928_0, b)))

We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

The following defined symbols remain to be analysed:
2ndsneg, 2ndspos

They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg

(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol 2ndsneg.

(16) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

The following defined symbols remain to be analysed:
2ndspos

They will be analysed ascendingly in the following order:
2ndspos = 2ndsneg

(17) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol 2ndspos.

(18) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

(20) BOUNDS(n^2, INF)

(21) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

No more defined symbols left to analyse.

(22) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n2) was proven with the following lemma:
times(gen_s:0'6_0(n928_0), gen_s:0'6_0(b)) → gen_s:0'6_0(*(n928_0, b)), rt ∈ Ω(1 + b·n9280 + n9280)

(23) BOUNDS(n^2, INF)

(24) Obligation:

TRS:
Rules:
from(X) → cons(X, n__from(s(X)))
2ndspos(0', Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0', Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0'))
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0', Y) → 0'
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
activate(n__from(X)) → from(X)
activate(X) → X

Types:
from :: s:0' → n__from:cons:cons2
cons :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
n__from :: s:0' → n__from:cons:cons2
s :: s:0' → s:0'
2ndspos :: s:0' → n__from:cons:cons2 → rnil:rcons
0' :: s:0'
rnil :: rnil:rcons
cons2 :: s:0' → n__from:cons:cons2 → n__from:cons:cons2
activate :: n__from:cons:cons2 → n__from:cons:cons2
rcons :: posrecip:negrecip → rnil:rcons → rnil:rcons
posrecip :: s:0' → posrecip:negrecip
2ndsneg :: s:0' → n__from:cons:cons2 → rnil:rcons
negrecip :: s:0' → posrecip:negrecip
pi :: s:0' → rnil:rcons
plus :: s:0' → s:0' → s:0'
times :: s:0' → s:0' → s:0'
square :: s:0' → s:0'
hole_n__from:cons:cons21_0 :: n__from:cons:cons2
hole_s:0'2_0 :: s:0'
hole_rnil:rcons3_0 :: rnil:rcons
hole_posrecip:negrecip4_0 :: posrecip:negrecip
gen_n__from:cons:cons25_0 :: Nat → n__from:cons:cons2
gen_s:0'6_0 :: Nat → s:0'
gen_rnil:rcons7_0 :: Nat → rnil:rcons

Lemmas:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)

Generator Equations:
gen_n__from:cons:cons25_0(0) ⇔ n__from(0')
gen_n__from:cons:cons25_0(+(x, 1)) ⇔ cons(0', gen_n__from:cons:cons25_0(x))
gen_s:0'6_0(0) ⇔ 0'
gen_s:0'6_0(+(x, 1)) ⇔ s(gen_s:0'6_0(x))
gen_rnil:rcons7_0(0) ⇔ rnil
gen_rnil:rcons7_0(+(x, 1)) ⇔ rcons(posrecip(0'), gen_rnil:rcons7_0(x))

No more defined symbols left to analyse.

(25) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_s:0'6_0(n9_0), gen_s:0'6_0(b)) → gen_s:0'6_0(+(n9_0, b)), rt ∈ Ω(1 + n90)

(26) BOUNDS(n^1, INF)